Extensions 1→N→G→Q→1 with N=D8 and Q=C22

Direct product G=N×Q with N=D8 and Q=C22
dρLabelID
C22×D832C2^2xD864,250

Semidirect products G=N:Q with N=D8 and Q=C22
extensionφ:Q→Out NdρLabelID
D81C22 = C2×D16φ: C22/C2C2 ⊆ Out D832D8:1C2^264,186
D82C22 = C16⋊C22φ: C22/C2C2 ⊆ Out D8164+D8:2C2^264,190
D83C22 = C2×C8⋊C22φ: C22/C2C2 ⊆ Out D816D8:3C2^264,254
D84C22 = D8⋊C22φ: C22/C2C2 ⊆ Out D8164D8:4C2^264,256
D85C22 = D4○SD16φ: C22/C2C2 ⊆ Out D8164D8:5C2^264,258
D86C22 = C2×C4○D8φ: trivial image32D8:6C2^264,253
D87C22 = D4○D8φ: trivial image164+D8:7C2^264,257

Non-split extensions G=N.Q with N=D8 and Q=C22
extensionφ:Q→Out NdρLabelID
D8.1C22 = C2×SD32φ: C22/C2C2 ⊆ Out D832D8.1C2^264,187
D8.2C22 = C4○D16φ: C22/C2C2 ⊆ Out D8322D8.2C2^264,189
D8.3C22 = Q32⋊C2φ: C22/C2C2 ⊆ Out D8324-D8.3C2^264,191
D8.4C22 = Q8○D8φ: trivial image324-D8.4C2^264,259

׿
×
𝔽